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SUMMARY 
It  is shown that the interpenetration of two ionized streams is 

arrested, as a rule, not because of individual collisions between 
particles belonging to opposite streams, but because the whole 
system of charged particles is unstable. The smallest wavelength 
of an unstable oscillation is Amin, where 

Amin = J(w)(l- rrmo U2 3-3’4. 
Here i- U are the velocities of the undisturbed streams, and N is 
the density of electrons in each. 

A further calculation for the non-relativistic case deals with 
the amplification of the plasma oscillations present in two 
colliding streams. It is shown that these grow rapidly and that 
TCrity‘(m0 U2/rrNe2) is the distance of interpenetration achieved 
before the counterstreaming of the electrons is brought to a 
halt. The value of TCrit depends only insensitively on the ratio 
of the internal plasma energy densities Tpl to the kinetic energy 
densities Tkin in the streams. For example, ‘TCrit = 9.0 when 
T p l :  Tkin  = 1 : 10, and TCrit = 19.0 when Tpl : Tkin = 1 : lo5. 

1. INTRODUCTION 
The interpenetration of two fully ionized streams of gas is considered 

in this paper. It is shown that, as a rule, the counterstreaming is stopped 
because of a collective instability among the electrons present, and that 
close encounters between charged particles belonging to the two streams 
are relatively unimportant in destroying the systematic motion. 

Advance information of some of the results in this paper was given by 
the author in an earlier paper (Kahn 1955) where it was suggested that 
this instability effect leads to the conversion of the kinetic energy of the two 
streams into the energy of irregular plasma oscillations. A particular 
example of this might be found in the collision of two galaxies-as in the 
radio source Cygnus A. One would therefore expect random electric 
fields to be present in the plasma left after a collision. A fast charged particle 
passing through such a medium would then be expected to radiate electro- 
magnetic waves. 

It may, 
for instance, explain the smallness of the distance to which two counter- 
streaming masses of plasma can interpenetrate. That the distance is small 
is shown, for instance, by Bostick’s (1956) experiments. 

The instability effect may also be important in the laboratory. 

F.M. 2 s  
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In the following two sections we derive the condition that an oscillation 
of a particular wavelength may be amplified. The treatment given is 
non-relativistic in $2, and relativistic in $ 3 .  In  $4 we consider the 
amplification of the oscillations which are present in the two streams before 
they have collided, and find a closer estimate of the time that elapses before 
the counterstreaming is stopped. 

Some calculations concerning this effect have been given by Lampert 
(1956), who uses the dispersion relations for a plasma. 

2. A NON-RELATIVISTIC TREATMENT 

Consider two interpenetrating streams, each of infinite extent, and each 
consisting of N protons and N electrons per cm3. Let stream 1 have a 
velocity U in the direction of increasing x, and stream 2 a velocity U in 
the direction of decreasing x. Let E be the charge on the electron and m, 
its rest mass. Let the temperature Tineach stream be such that k T  < m, U2. 
The thermal motion among the particles may then be neglected. 

An electron passing within a distance r of a charged particle from the 
other stream experiences a change E2/r in potential energy. Its kinetic 
energy relative to this particle is &mn(2U)2 = 2m, U2. An appreciable 
deflection in the direction of the electron's motion occurs if 

E2/r = 0(2m,  U2),  

that is, r = O(e2/2m, U'). (1) 

The effective cross-sectional area for such a close collision is thus of the 
order of S = m4/4m; U4. These encounters would eventually destroy the 
systematic motion. The distance of interpenetration will at most be of the 
order of 

(2) 
1 2mt U4 

2Ns= rn' 
But there is a collective instability among the electrons which will stop 

the counterstreaming very much sooner. Assume, for the moment, that 
the protons, because of their much greater mass, continue their uniform 
motion, and provide a uniform background of positive charge. Let the 
densities in the electron streams be N( 1 + sl) and N( 1 + s2), respectively, 
and let the velocities be U t u ,  and - U+u,; s,, s,, u1 and u2 are here 
regarded as functions of position and time. We shall confine ourselves to 
one-dimensional disturbances, so that the position enters through the 
x-coordinate only. The resulting electrostatic field will be parallel to Ox ; 
let E be its magnitude. 

Poisson's equation then gives 
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and the linearized equations of motion for the two electron streams are 

a ~ ,  aul E 

at ax m 
- + U - = - E ,  

au2 au 
at ax m 
-- U 2 = - E E .  

The equations of continuity for the two electron streams are 
au 

au2 

N(l+s,)+N(l+s,)$ = 0, 

[& - ( U - u 2 ) s  "I N ( 1 + s 2 ) + N ( 1 + s 2 ) ~  = 0, 

or, in linearized form, 
as, as, au, - + u z  + - = 0, 
at ax 

as, as2 au, 
at ax ax 
-- u- + - = 0. 

The combination of (3) and (4) leads to 

(; + u;>2 = Q2(s1+s2), 

where Q2 = 4nNe2/m,. With the aid of (6), 

Similarly, 

(; + u&)2sl = -a2 (s1+s2) .  

(; - u ;- sg = - @(sl + $2). 

(4) 

( 5 )  

Now look for solutions of (9) and (10) in the form 

s1 = a,ei("-"') 9 sg = a2ei("-"t). (11) 
If a solution can be found, with a given real k,  for which w = p + io, where 
p and o are real, and u > 0, then the counterstreaming is unstable, for 
the amplitude of the corresponding oscillation can grow indefinitely. The 
maximum value Kmax for which this is possible gives the minimum value 
Amin of the wavelengths at which there is instability, through the relation 
Amin = 2 ~ / k m a x .  If such counterstreaming were ever to occur it would 
be stopped within a distance of the order of Amin. 

The evaluation of kma, is straightforward. Substitution from (1  1)  
into (9) leads to 

(w + kU)2a1 = W(a, + a2), 

or [(w+kU)2-Q2]u,-Q2a2 = 0. (12) 

- R2u, + [(w -KU)2- Q7a2 = 0. (13) 

or 04-22wa(K2U2+ a2)+l$2U2(K2u2--2Q2) = 0. (14) 

Similarly, from ( l o ) ,  

Elimination of a, and a2 from (12) and (13) gives 

[(w + KU)2- Q""(0 - K U)2 - a21 - Q 4  = 0, 

2 s 2  
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Since ( K W Z  -I- ! 2 ) 2  K2Ua(K2U2- 2W) 
for all real values of K, U and Q, it follows that (14) always has real roots 
for w2. However, if k2U2-2Q2 is negative, one possible value of w2 is 
negative, say -a2, and this leads to 

with instability as a consequence. 
w = kiu, 

The critical wave-number is given by K2U2 - 2Q2 = 0, so that 

Km,, = l/2Q/U. 

The corresponding critical wavelength is 

Amin = 2?~/km,, = d2nU/Q. 

Any disturbance with a wavelength exceeding Amin will be amplified. 
The counterstreaming thus becomes unstable within a distance of the 
order of Amin. I n  terms of N ,  E ,  mo and U, 

This is much shorter than the limit set to the counterstreaming by close 
collisions if 

nm, U2 

that is, if 

To  give a numerical value, when U = los cm/s the condition states 
that N need only be much smaller than 2 x particles per cm3. This 
critical density is very large. The instability effect is therefore usually 
the one that arrests the counterstreaming of the electrons. 

It is harder to say exactly what happens to the protons. They have a 
larger value of Amin, but in their case the greater effectiveness of the 
instability, as opposed to that of close collisions, is even more marked 
(as is shown by substitution of a larger value for mo in (15)). However 
the presence of the oscillating electron gas cannot be left out of account 
in any calculation, and the theory is rather harder. I t  seems nonetheless 
clear that the protons also contribute their kinetic energy to the collective 
oscillation, rather than to thermal motion. 

3. THE EXTENSION TO THE RELATIVISTIC CASE 

Let U+ul be the velocity of an electron in the first stream. Its 
momentum is 

mo(U+u1) - mo u 
= (1 - ( u + u1)2/c”)”2 - (1 - U 2 / C 2 ) 1 / 2  + (1 - U 2 / C 2 ) 1 / 2  

- mo u mo u1 
(1 - U 2 p ) 1 / 2  + (1 - u2/c2)3/2 + -.: - 
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to the first order. The linearized equation of motion is 

605 

or (g + UL)ul = EE/M, 

where M = mo( 1 - U2/c2)-3/2. There is a similar change in the equatioix 
for the second stream. Thus, the only alteration is that the rest mass m, 
is replaced by a virtual mass M = mo( 1 - U2/c2) 312. 

The linearized equations of continuity do not change. 
Finally there is no change in the equation relating sI and s, to E, unless 

w / k  = c. T o  see this we note that the vector potential is parallel to Ox. 
Let A be its magnitude. Then 

1 
a x 2  c2 at2 C 
_ - _ - -  - - - ( 4 ~ N 4  1 + $I)( U + ~ 1 )  + 47~N4 1 + sZ)( - U + u ~ ) } .  (17) 
a2A 1 a2A 

For the scalar potential 4, 

We operate on (17) with -d/cat and on (18 )  with -a/dx. Then since, 
1 aA a+ 
c at ax E = - - - - -  

we find, on adding and linearizing, that 

But, according to the linearized equations of continuity ( 6 )  and (7), 

a as1 a as2 (u2 - Us,) = - - at 9 
& (ul + Us,) = - - at 2 

and it follows that 

Equation (20) is equivalent to equation (3), unless the wave motion is such 
that 

and 

that is, unless the disturbance propagates with the speed of light. 

by m,( 1 - Uz/ca)-3'z we find that the critical wavelength now becomes 
Since the only change made in the relativistic treatment is to replace m, 

hmin = J(-)(l- nm, U2 3-3/4. 
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4. THE AMPLIFICATION OF OSCILLATIONS 

We now return to the non-relativistic case. Suppose that two uniform, 
ionized, semi-infinite streams collide with one another. Once again let 
there be N protons and N electrons per unit volume, and let + U and - U 
be the undisturbed velocities in the two streams. Let the first impact occur 
at x = 0 at time t = 0. 

We assume further that the temperature in each stream is initially zero, 
but that there are present in it random electrostatic oscillations, whose 
energy per unit mass is small compared with &U2. We shall try to find out 
how long it is likely to be before these oscillations are amplified sufficiently 
to make the linear approximation break down. When this happens the 
electrostatic energy will be comparable with the energy of counterstreaming, 
and the latter may then be expected to be brought to a halt. The calculation 
should give a closer estimate of the possible distance of interpenetration 
of the electrons in the two streams. 

The neglect of the initial temperature To is justified provided 
U2 % kTo/mo. For, as Bohm and Gross have shown (see, for instance, 
Spitzer (1956)), the thermal motions do not appreciably affect plasma 
oscillations whose wavelengths are much in excess of 2/(KTo/NE2), whereas 
the oscillations that are amplified most readily in the present case are those 
with wavelengths of the order of d ( m o  U2/Nc2). 

The introduction of dimensionless variables will simplify the further 
working. We set 

T = at, X = Qx/U, 8 = EE/mo QU, wl = ulfU, v2 = u2/U. 

(The meanings of E, Q, E ,  m,, u1 and u2 are the same as in 5 2.) The equations 
of $ 2  become 

where s, and s2 also have the same meaning as in $2. The equations (22) 
combine to give 

! (g + &)2sl+s1 = -s2, 

($ - &Ysg+s2 = -51, 

or 

(the symbol sL2 stands for either s, or SJ. 
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A set of coordinates alternative to X and T is given by 

4 = T-x, 7 = T+X,  

a a  a a a  a - + -  = 2 - .  aT a x  aq 

and leads to 

= 2 p  

Equations (23) then become 
azs, 

a2s2 
at2 

4 -2 ar] +s, = -s2, 

4- f S 2  = -sl, 

and (24) becomes 

607 

Now the first stream is moving in the direction of increasing X ;  at 
time T its front surface is at X = T ,  while the front surface of the second 
stream is at X = -T.  Counterstreaming therefore occurs only in the 
part of the half-plane T > 0 which lies between the lines X = 7 and 
x = - T ,  or, alternatively, between 4 = 0 and 7 = 0 (region A in figure 1). 

X 

Figure 1. The nature of the motion in various regions. 

Regions B and D in figure 1 are occupied only by streams 2 and 1, respectively. 
Region C is empty. Our equations therefore apply only in region A ; to find 
the appropriate solutions adequate boundary conditions must be known 
on the positive parts of 04 and Or]. These boundary conditions are 
determined by the oscillations present in the single streams occupying 
regions B and D. 

In  figure 2 the diagram is re-drawn with the [-axis horizontal and the 
q-axis vertical. Suppose we seek the solution of the equations within a 
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region to the right of and above a curve PQ whose gradient never takes a 
finite positive value. The solution of equation (25) may be written 

and this shows that the value of s1 at a typical point R is determined solely 
by the values of s, and &,/a7 at the point So, directly below R on PQ, and 
by the value of s, at all points of RS,. 

Repetition of the argument shows that the value of s2 at R', say, depends 
only on the values of s2 and as,/af at Ti, which lies on PQ to the left of R', 
and on all the values taken by s1 on Ti R'. Continuing in this way we find 
that the values of s1 and s2 at R are determined completely by the values 
of s1 and as,/aq, s2 and as2/af  on the stretch TOSO of PQ, where To lies to 
the left of R and on PQ. In fact these values define the function within 
the area RS, To. It follows that the solution within the region 0 < t < f,,, 
0 < 7 < qo is fully determined when s1 and asl/aq are known on the 
stretch of the &axis from 0 to to, and when s2 and as2/a[ are known on the 
7-axis, from 0 to qo. 

Figure 2. The domain of dependence for a point R. 

But the q-axis has the equation X = r in the other set of coordinates. 
Its positive part therefore represents the front surface of stream 1 from 
time T = 0 onwards. The required boundary conditions are therefore 
equivalent to a knowledge of s2 and a@,$ at this front surface, and of s1 
and as,/aq at the other front surface, that is, to a knowledge of the conditions 
at various times in the part of stream 2 which is just about to collide with 
stream 1, and vice versa. 

The equations are linear and so a general solution may be built up by 
the addition of various basic solutions corresponding to simple boundary 
conditions. Finally the solution for the first quadrant of the (I,q)-plane 
due to two semi-infinite streams will be the same as that due to two infinite 
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streams of the same density provided only the same boundary values on 
the positive halves of the E- and q-axes apply in the two cases. 

We shall now find the solution that corresponds to the following simple 
boundary conditions : 

Sl = 6 ( t  - t o ) ,  
on the positive half of the &axis ; 

s, = 0)  
on the positive halfof theq-axis. Herea(5)stands for the Dirac delta function. 

The solutions we shall find will be valid 
only to the right of and above P (see figure 3). In this region, the solution 
with the above boundary conditions is the same as that given by the 
boundary conditions s1 = a(!$ - to), asl/aq = 0, s2 = 0, as,/a!$ = 0, on the 
line AB through P,  provided the slope of this line is negative, say - 1. 
This alternative set of conditions leads to the same values on P[ and P?', 
since the values of s2 and as,/at are zero at all points to the right of AP 
and to the left of Pq', and therefore by continuity on Pq'. Similarly the 
values of s1 and asl/aT are zero at all points above PB and below Pl ,  with 
the exception of the point P. 

as1/aq = 0, 

as#!$ = 0 

Let P be the point ( f o , O ) .  

i 

I 

REG~ON OF 
VALIDITY 

\ 'f 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

8 

Figure 3. Region of validity of the basic solution. 

The nature of the solution corresponding to these boundary conditions 
is not affected by the exact value of to ; the solutions for the points to and (;, 
are identical except for a relative displacement to--(; parallel to O(. We 
therefore choose 5, = 0 for the sake of simplicity. The line AB then has 
the equation + q = 0, or T = 0 in (X ,  T )  coordinates. 

The equivalent boundary conditions are now 
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or 

With the aid of the first of the equations (23) the third and fourth 
conditions (29) may be written 

A possible solution of the differential equation (27) for sl is 
- e i [ K X + ~ ( K ) r l  

1 -  

provided p ( K )  satisfies 

(p2 - - 2(p2 + K2)  = 0, 
that is, p4 - 2p2(K2 + 1) + (K4 - 2K2) = 0. (30) 
(This equation is the dimensionless equivalent of (14).) Corresponding 
to any given positive value of K there are four values of p, of which two 
may be imaginary. The most general solution of (27) is, in the complex 
notation, 

1 m  

(31) ( K ) & K X + P @ ) ~ I  &. 
s1 = r= = 1 I,-,, 

The four u, coefficients for each K have now to be determined from the 
boundary conditions for T = 0. In  the complex notation, 

6(X) = : jrn eiKx dK = sl(X, 0) 
0 

a l a  
- sl(X, 0) = - 1 KeiKx dK. a x  77 (1 

so that 

Hence, from (29) and (31), 

2 Im ur(K)eiKx dK = 
r= l  0 

Comparison of coefficients then shows that 
4 1 2 u,(K) = -. 

77 r = 1  

Setting Pr = T K r ,  

we have 2 P r = 1 .  
4 

1.=1 

The other conditions give that 

(32) 

(33) 

7-1 
(34) 
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i P S K + ~ ~ I ~  = 1 ,  
7=1 

1 

2\ ~rPr[K+prY = - K *  
r = l  

Now the operation (35 )  -2K x (34) - K 2  x ( 3 3 )  gives 
4 

r = l  
2 Prp: = Kz+L 

and the operation (36) - 2K x (35 a) - K 2  x (34) gives 
4 

2 P r p ; =  -K3-3K.  
r = l  

But the roots of (30) occur in pairs, such that 

--/+ p3 = -p4, pf+& = 2(K2+1).  

After some manipulation the solution for B1 is found to be 

a = 4 - 4- 
P l b ?  - K 2  - 1 

(36 a1 

(37) 

We are especially interested in the disturbances that are amplified 
most rapidly, that is, in those for which p1 takes its numerically largest 
imaginary value, which is readily seen to be ? i i ,  and occurs when K = 4 113. 
In this case Pl = 4. It is seen that = -4; is the appropriate coefficient 
for an amplified wave. 

In general, when p1 is imaginary, the second term on the right-hand side 
of (37) gives the imaginary part of &. This is of the first order in 
K = K-+113, and so = a, to the second order in K 

The solution of (30) in terms of K is 

p: = (443 +K) '+  1 - 2/(4(*.13 +K)' -k 1} 

= -a( l - 3 ~ ~ +  ...) 

to the second order in K ,  and so 

p1 = - i i ( 1 - * K 2 + . . , )  

also to the second order. 
Finally, the imaginary part of p1 is given by 

- & - (hd3 + K ) ~  + 1 
- i - ( 4 , / 3 + K ) z - 1  

= - #K 

to the first order in K, so that 

& = a - 8Z.K 

and 
a1 = &(I 1 - 3 i K  7). 

(39) 
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For large values of T the solution therefore asymptotically tends to 

The solution is valid only at points where /XI < T,  that is at all points 
where there is double streaming. 

If the condensation s,(X, T) is produced by an input function a([ - 224) 
on the line q = 0, the corresponding point P in figure 3 has the coordinates 
[ = 22.4, q = 0, or S = -u ,  T = u. The expression for the condensation 
is now 

In general, let the input function be eiqTb at the point X = - T ~  at time 
T = Tb,  for Tb > 0;  this instant is on the line X S T  E q = 0. The corre- 
sponding condensation will be 

(42) 
The integrand in (42) has the form R(Tb)exp[P(Tb) + ~ Q ( T ~ ) ] ,  where P, 

Q and R are real, and P ( T ~ )  is a decreasing function of T ~ .  The integral 
may therefore be approximated by 

R(O)exp[P(O) +iQ(O)] l X  exp[P'(O) +@'(O)]T~  dq, 
0 

and so 

1 exp { i y} exp { .( 1 2 - ") 3T2 
Si(x,T) = 

This is large only when T $1, and in that case the greatest values 
of sl occur where 1x1 < T ,  giving, at such points, 

When the input function is given by 

we find 
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As we shall show, the plasma oscillation in stream 1 before the collision 
generates an input function which may be described in the form of a Fourie 
integral, as in (44). The function g(p) is such that 

(g(qlg"G7') ) = [w(q>.1(4')1Vq - !7') (46) 
where 8(q) is once again the Dirac delta function, and the diamond-shaped 
brackets (...)stand for " expectationvalue of. . .". There is no phase relation 
between any g(q) and any g(q'), unless q = q'. It follows that 

(47) 

It only remains to express this result in terms of the internal motion of 
stream 1 before the collision. This is best described by means of a position 
coordinate t at rest in the stream, and the time coordinate T. The linearized, 
dimensionless equations of the oscillation are 

aV/aT = 8 (motion), (48 a) 
as/& + %/at = 0 (continuity), (48 b) 

a q a t  = s (Poisson). (48 c) 
Hence aV/a?+& = 0, 

and € = G(t)eciT (49) 
in the complex notation. The form of the solution shows the well-known 
fact that the oscillations in the single stream have a frequency independent 
of the wave number, and so have zero group velocity. They cannot therefore 
propagate energy, and the part of stream 1 that has not yet collided remains 
unaffected by the part that has done so. 

From (48a) and (49) it follows that 

z, = iG([)e-iT, (50) 

s = G'(t)e-". ( 5 1 )  

and from (48 c) and (49) that 

The average electrostatic energy per unit volume is 

and the average kinetic energy per unit volume of the electron gas relative 
to the stream as a whole is 

$Nm, uu* = +Nmo U2vv" = tNm,  u2GG*([). 

4 Nm, U2GG*(t). 
The energy per unit volume of the electron plasma is therefore 
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The input function for the motion in the region of counterstreaming 
is now G([)ciT, evaluated on the line X(= 7 - 6 )  = -7,  or 8 = 27, and 
is equal to G'(h)r iT  = f(7). 

But the field in the incident stream may be represented by 
m 

G(5)e = e-iT 1 r(l) eit'dl; (52) 
--I 

if it is a random field there are no phase relations between any r(2) and 
r(l'), unless I = I'. We have once again 

(r(z)ryr)) = [w(z)w(r)]w(z-- r) ,  ( 5 3 )  

and (GG"(t))= lm (F(Z)F*(Z'))dZdZ' 
- m  - m  

= Im W(Z)dZ. 
--co 

(54) 

The average internal energy per unit volume present in the dimensionless 
wave number range (I, E + dZ) is +Nm, U2 W(Z) dl ;  the total internal energy 
density of the plasma is 

m 

Tpl = QNmo U2 W(Z)dZ. ( 5 5 )  
- -m 

Further G'([)e-iT = ie-tr . J r n  Zr(Z)eizEdZ 
- O D  

and so f ( ~ )  = ie-ir Irn ZI'(Z)e2"T dZ 
- m  

m 

(&q + &)r($q + 3) e i g T  dq. (56) 
- m  

We can now identify g(q) with i($q+i)r(+q+Q). Since there are no 
phase relations among the r"s, there are none among the g's either, as 
required. It follows from (47) that 

-t. ' I z  2 W(3p + 3) dq 
exp(i- - 2X2/37) c - - 

1 9 2 ~ 7  . - m  l+qd3+q2 

where t is the effective dimensionless wave number range of the internal 
oscillations. Now +Nm, U2 = Tkin is the initial kinetic energy of motion 
of the electrons in stream 1 relative to the (x, t )  system of coordinates (which 
is symmetrical with respect to the two streams). It follows from ( 5 5 )  
and (57) that 
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It was one of the initial assumptions in setting up the linearized equations 
Equation (58) of motion that the condensation s1 is much less than unity. 

shows that this is most probably no longer true when 

(59) 
eXp(T-2X2/3T) Tkin 

2-. 
48m- TPl  

However, when s1 is of order unity, the energy per unit mass of the plasma 
oscillations in the double stream will be comparable with the initial relative 
kinetic energy per unit mass of the two streams; since the former must 
grow at the expense of the latter it follows that the relative motion will by 
that time have been stopped to a large extent. The minimum valueTcrit which 
satisfies (59) therefore leads to an estimate of the length of time for which 
the two streams can interpenetrate, and of the depth to which they can do so. 

The smallest value of T for which (59) holds occurs at X = 0, that is 
at the position where the two streams made first contact, and here 

or a 
a-1 Tofit = -(a+loga-l), 

where a = log{48.rr(Tkin/Tpl)}. (61) 
To  take some examples, when Tpl/Tkin = lO-l, or 1e6, TCrit = 9.6, 

The times corresponding to these values are 14.6 or 19.6, respectively. 
given by 

since 2U is the initial relative velocity of the streams the corresponding 
distances of penetration of stream 1 into stream 2 are given by 

Twit wit J ( 4 s )  ; t .  = - = T  cr1t Q 

Any plasma oscillation initially present in stream 2 will lead to a further 
contribution to the right-hand side of (58). If the oscillations in the two 
streams have roughly equal energies, the effect will be to multiply that side 
by 2, and this leads to a decrease by log,2 = 0-69 in the estimate for T,,~~. 

The more accurate estimate for the distance of interpenetration of the 
streams, given in (62), only differs by the numerical factor 2/(2/Tf)Tcrit, 
from the earlier, cruder estimate given in (15). The numerical examples 
that have been quoted show that in any particular case T,,,~ depends, but 
only rather insensitively, on the ratio of the energies of the plasma oscillations 
present in the streams before collision to the energy of their relative motion. 
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